Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 14: 1167639, 2023.
Article in English | MEDLINE | ID: covidwho-20245313

ABSTRACT

Background: Corona Virus Disease 2019 (COVID-19) and Osteoarthritis (OA) are diseases that seriously affect the physical and mental health and life quality of patients, particularly elderly patients. However, the association between COVID-19 and osteoarthritis at the genetic level has not been investigated. This study is intended to analyze the pathogenesis shared by OA and COVID-19 and to identify drugs that could be used to treat SARS-CoV-2-infected OA patients. Methods: The four datasets of OA and COVID-19 (GSE114007, GSE55235, GSE147507, and GSE17111) used for the analysis in this paper were obtained from the GEO database. Common genes of OA and COVID-19 were identified through Weighted Gene Co-Expression Network Analysis (WGCNA) and differential gene expression analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to screen key genes, which were analyzed for expression patterns by single-cell analysis. Finally, drug prediction and molecular docking were carried out using the Drug Signatures Database (DSigDB) and AutoDockTools. Results: Firstly, WGCNA identified a total of 26 genes common between OA and COVID-19, and functional analysis of the common genes revealed the common pathological processes and molecular changes between OA and COVID-19 are mainly related to immune dysfunction. In addition, we screened 3 key genes, DDIT3, MAFF, and PNRC1, and uncovered that key genes are possibly involved in the pathogenesis of OA and COVID-19 through high expression in neutrophils. Finally, we established a regulatory network of common genes between OA and COVID-19, and the free energy of binding estimation was used to identify suitable medicines for the treatment of OA patients infected with SARS-CoV-2. Conclusion: In the present study, we succeeded in identifying 3 key genes, DDIT3, MAFF, and PNRC1, which are possibly involved in the development of both OA and COVID-19 and have high diagnostic value for OA and COVID-19. In addition, niclosamide, ciclopirox, and ticlopidine were found to be potentially useful for the treatment of OA patients infected with SARS-CoV-2.


Subject(s)
COVID-19 , Osteoarthritis , Aged , Humans , COVID-19/diagnosis , COVID-19/genetics , SARS-CoV-2/genetics , Molecular Docking Simulation , Algorithms , Osteoarthritis/diagnosis , Osteoarthritis/drug therapy , Osteoarthritis/genetics , COVID-19 Testing
2.
Funct Integr Genomics ; 23(1): 71, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269370

ABSTRACT

This article aims to explore hub genes related to different clinical types of cases with COVID-19 and predict the therapeutic drugs related to severe cases. The expression profile of GSE166424 was divided into four data sets according to different clinical types of COVID-19 and then calculated the differential expression genes (DEGs). The specific genes of four clinical types of COVID-19 were obtained by Venn diagram and conducted enrichment analysis, protein-protein interaction (PPI) networks analysis, screening hub genes, and ROC curve analysis. The hub genes related to severe cases were verified in GSE171110, their RNA-specific expression tissues were obtained from the HPA database, and potential therapeutic drugs were predicted through the DGIdb database. There were 536, 266, 944, and 506 specific genes related to asymptomatic infections, mild, moderate, and severe cases, respectively. The hub genes of severe specific genes were AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11, and also differentially expressed in GSE171110 (P < 0.05), and their AUC values were greater than 0.955. The RNA tissue specificity of AURKB, CDC6, KIF11, UBE2C, CCNB2, CDC20, TOP2A, BUB1, and CCNB1 specifically enhanced on lymphoid tissue; CCNB2, CDC20, TOP2A, and BUB1 specifically expressed on the testis. Finally, 55 drugs related to severe COVID-19 were obtained from the DGIdb database. Summary, AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11 may be potential diagnostic biomarkers for severe COVID-19, which may affect immune and male reproductive systems. 55 drugs may be potential therapeutic drugs for severe COVID-19.


Subject(s)
COVID-19 , Humans , Computational Biology , COVID-19/genetics , High-Throughput Nucleotide Sequencing
3.
1st International Conference on Computing, Communication and Green Engineering, CCGE 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1901427

ABSTRACT

The immense pressure and tension has created in the worldwide healthcare systems by disease. Various existing system has defined drug prediction system based on current patient evaluation. In this research we proposed a drug prediction for COVID-19 patient based on protein to protein reactions and availability. In order to evaluate the protein-protein interactions (PPIs) between some of the virus and individual receptors that are also confirmed utilizing biomedical simulations, the framework also defines machine learning models. The classification techniques are consistent with the predictions of separate physical material sequence-based characteristics such as classification of amino acids, distribution of pseudo amino acids and conjoint triads. Finally we will evaluate the system with numerous machine learning algorithm and show the effectiveness of propose systems. © 2021 IEEE.

4.
Comput Struct Biotechnol J ; 20: 2442-2454, 2022.
Article in English | MEDLINE | ID: covidwho-1894921

ABSTRACT

Cathepsin L (CTSL), a cysteine protease that can cleave and activate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, could be a promising therapeutic target for coronavirus disease 2019 (COVID-19). However, there is still no clinically available CTSL inhibitor that can be used. Here, we applied Chemprop, a newly trained directed-message passing deep neural network approach, to identify small molecules and FDA-approved drugs that can block CTSL activity to expand the discovery of CTSL inhibitors for drug development and repurposing for COVID-19. We found 5 molecules (Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin) that were able to significantly inhibit the activity of CTSL in the nanomolar range and inhibit the infection of both pseudotype and live SARS-CoV-2. Notably, we discovered that daptomycin, an FDA-approved antibiotic, has a prominent CTSL inhibitory effect and can inhibit SARS-CoV-2 pseudovirus infection. Further, molecular docking calculation showed stable and robust binding of these compounds with CTSL. In conclusion, this study suggested for the first time that Chemprop is ideally suited to predict additional inhibitors of enzymes and revealed the noteworthy strategy for screening novel molecules and drugs for the treatment of COVID-19 and other diseases with unmet needs.

5.
Afr J Infect Dis ; 16(2): 80-96, 2022.
Article in English | MEDLINE | ID: covidwho-1856491

ABSTRACT

Background: The 2'-O-methyltransferase is responsible for the capping of SARS-CoV-2 mRNA and consequently the evasion of the host's immune system. This study aims at identifying prospective natural inhibitors of the active site of SARS-CoV-2 2'O-methyltransferase (2'-OMT) through an in silico approach. Materials and methods: The target was docked against a library of natural compounds obtained from edible African plants using PyRx - virtual screening software. The antiviral agent, Dolutegravir which has a binding affinity score of -8.5 kcal mol-1 with the SARS-CoV-2 2'-OMT was used as a standard. Compounds were screened for bioavailability through the SWISSADME web server using their molecular descriptors. Screenings for pharmacokinetic properties and bioactivity were performed with PKCSM and Molinspiration web servers respectively. The PLIP and Fpocket webservers were used for the binding site analyses. The Galaxy webserver was used for simulating the time-resolved motions of the apo and holo forms of the target while the MDWeb web server was used for the analyses of the trajectory data. Results: The Root-Mean-Square-Deviation (RMSD) induced by Rhamnetin is 1.656A0 compared to Dolutegravir (1.579A0). The average B-factor induced by Rhamnetin is 113.75 while for Dolutegravir is 78.87; the Root-Mean-Square-Fluctuation (RMSF) for Rhamnetin is 0.75 and for Dolutegravir is 0.67. Also, at the active site, Rhamnetin also has a binding affinity score of -9.5 kcal mol-1 and forms 7 hydrogen bonds compared to Dolutegravir which has -8.5 kcal mol-1 and forms 4 hydrogen bonds respectively. Conclusion: Rhamnetin showed better inhibitory activity at the target's active site than Dolutegravir.

6.
Front Microbiol ; 13: 819046, 2022.
Article in English | MEDLINE | ID: covidwho-1809434

ABSTRACT

Human beings are now facing one of the largest public health crises in history with the outbreak of COVID-19. Traditional drug discovery could not keep peace with newly discovered infectious diseases. The prediction of drug-virus associations not only provides insights into the mechanism of drug-virus interactions, but also guides the screening of potential antiviral drugs. We develop a deep learning algorithm based on the graph convolutional networks (MDGNN) to predict potential antiviral drugs. MDGNN is consisted of new node-level attention and feature-level attention mechanism and shows its effectiveness compared with other comparative algorithms. MDGNN integrates the global information of the graph in the process of information aggregation by introducing the attention at node and feature level to graph convolution. Comparative experiments show that MDGNN achieves state-of-the-art performance with an area under the curve (AUC) of 0.9726 and an area under the PR curve (AUPR) of 0.9112. In this case study, two drugs related to SARS-CoV-2 were successfully predicted and verified by the relevant literature. The data and code are open source and can be accessed from https://github.com/Pijiangsheng/MDGNN.

7.
Inform Med Unlocked ; 30: 100932, 2022.
Article in English | MEDLINE | ID: covidwho-1757427

ABSTRACT

Dengue fever is a virus spread by mosquitoes that has no effective treatment or vaccination. Several dengue cases combined with the current COVID-19 pandemic, exacerbates this problem. Two proteins, NS5 methyltransferase and NS2B/NS3 primary protease complexes, are crucial for dengue viral replication and are the target sites for antiviral development. Thus, this study screened published literature and identified 162 marine fungus-derived compounds with active bioavailability. Following Lipinski's rules and antiviral property prediction, 41 compounds were selected for docking with NS5 methyltransferase and NS2B/NS3 protease (PDB ID: 6IZZ and 2FOM) to evaluate compounds that could stop the action of dengue viral protein complexes. To find the best candidates, computational ADME, toxicity, and drug target prediction were performed to estimate the potential of the multi-targeting fungal-derived natural compounds. Analyzing the result from 41 compounds, Chevalone E (-13.5 kcal/mol), Sterolic acid (-10.3 kcal/mol) showed higher binding energy against dengue NS2B/NS3 protease; meanwhile, Chevalone E (-12.0 kcal/mol), Brevione K (-7.4 kcal/mol), had greater binding affinity against NS5 methyltransferase. Consequently, this study suggests that Chevalone E is an effective inhibitor of NS5 methyltransferase and NS2B/NS3 protease. Ligand-based virtual screening from DrugBank was utilized to predict biologically active small compounds against dengue virus NS2B/NS3 major protease and NS5 methyltransferase. Both licensed medications, estramustine (DB01196) and quinestrol (DB04575), were found to be similar to Chevalone E, with prediction scores of 0.818 and 0.856, respectively. In addition, cholic acid (DB02659), acitretin (DB00459), and mupirocin (DB00410) are similar to Sterolic acid, zidovudine (DB00495), imipenem (DB01598), and nadolol (DB01203) are similar to Brocazine A, and budesonide (DB01222) and colchicine (DB01394) are related to Brevione K. These findings suggest that these could be feasible dengue virus treatment options, meaning that more research is needed.

8.
Data Intelligence ; 4(1):134-148, 2022.
Article in English | Web of Science | ID: covidwho-1677465

ABSTRACT

Due to the large-scale spread of COVID-19, which has a significant impact on human health and social economy, developing effective antiviral drugs for COVID-19 is vital to saving human lives. Various biomedical associations, e.g., drug-virus and viral protein-host protein interactions, can be used for building biomedical knowledge graphs. Based on these sources, large-scale knowledge reasoning algorithms can be used to predict new links between antiviral drugs and viruses. To utilize the various heterogeneous biomedical associations, we proposed a fusion strategy to integrate the results of two tensor decomposition-based models (i.e., CP-N3 and ComplEx-N3). Sufficient experiments indicated that our method obtained high performance (MRR=0.2328). Compared with CP-N3, the mean reciprocal rank (MRR) is increased by 3.3% and compared with ComplEx-N3, the MRR is increased by 3.5%. Meanwhile, we explored the relationship between the performance and relationship types, which indicated that there is a negative correlation (PCC=0.446, P-value=2.26e-194) between the performance of triples predicted by our method and edge betweenness.

9.
Comput Biol Med ; 135: 104568, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267638

ABSTRACT

The disease outbreak of Coronavirus disease-19 (COVID-19), caused by the novel SARS-CoV-2 virus, remains a public health concern. COVID-19 is spreading rapidly with a high mortality rate due to unavailability of effective treatment or vaccine for the disease. The high rate of mutation and recombination in SARS-CoV2 makes it difficult for scientist to develop specific anti-CoV2 drugs and vaccines. SARS-CoV-2-Mpro cleaves the viral polyprotein to produce a variety of non-structural proteins, but in human host it also cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), which suppresses the activation of the NF-κB pathway and weakens the immune response. Since the main protease (Mpro) is required for viral gene expression and replication, it is a promising target for antagonists to treat novel coronavirus disease and discovery of high resolution crystal structure of SARS-CoV-2-Mpro provide an opportunity for in silico identification of its possible inhibitors. In this study we intend to find novel and potential Mpro inhibitors from around 1830 chemically diverse and therapeutically important secondary metabolites available in the MeFSAT database by performing molecular docking against the Mpro structure of SARS-CoV-2 (PDB ID: 6LZE). After ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and binding energy calculation through MM-GBSA for top five hits, Sterenin M was proposed as a SARS-CoV2-Mpro inhibitor with validation of molecular dynamics (MD) simulation study. Sterenin M seems to have the potential to be a promising ligand against SARS-CoV-2, and thus it requires further validation by in vitro and in vivo studies.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA, Viral
10.
Mol Divers ; 26(1): 389-407, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1233268

ABSTRACT

The latest global outbreak of 2019 respiratory coronavirus disease (COVID-19) is triggered by the inception of novel coronavirus SARS-CoV2. If recent events are of any indicators of the epidemics of past, it is undeniable to state a fact that the SARS-CoV2 viral infection is highly transmissible with respect to its previously related SARS-CoV's. Papain-like protease (PLpro) is an enzyme that is required by the virus itself for replicating into the host system; and it does so by processing its polyproteins into a functional replicase complex. PLpro is also known for downregulating the genes responsible for producing interferons, an essential family of molecules produced in response to viral infection, thus making this protein an indispensable drug target. In this study, PLpro inhibitors were identified through high throughput structure-based virtual screening approach from NPASS natural product library possessing ~ 35,000 compounds. Top five hits were scrutinised based on structural aromaticity and ability to interact with a key active site residue of PLpro, Tyr268. For second level of screening, the MM-GBSA End-Point Binding Free Energy Calculation of the docked complexes was performed, which identified Caesalpiniaphenol A as the best hit. Caesalpiniaphenol A not only possess a double ring aromatic moiety but also has lowest minimum binding energy, which is at par with the control GRL0617, the only known inhibitor of SARS-CoV2 PLpro. Details of the Molecular Dynamics (MD) simulation and ADMET analysis helped to conclusively determine Caesalpiniaphenol A as potentially an inhibitor of SARS-CoV2 PLpro.


Subject(s)
COVID-19 Drug Treatment , Papain , Aniline Compounds , Benzamides , Humans , Naphthalenes , Peptide Hydrolases , RNA, Viral , SARS-CoV-2 , Workflow
11.
J Clin Lab Anal ; 35(6): e23789, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1216188

ABSTRACT

Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by the novel coronavirus (2019-nCoV) posed a serious threat to human health and life. Therefore, the discovery of drugs that can effectively prevent and treat COVID-19 is urgently warranted. In this article, the role and significance of angiotensin-converting enzyme 2 in drug development and the treatment of COVID-19 are discussed. It was found that the binding of ACE2 to SARS-CoV-2-RBD involved two core regions (31st and 353rd lysine) and 20 amino acids of the ACE2 protein. The mutation of these amino acids could lead to a great change of the binding ability of ACE2 and SARS-CoV-2-RBD. This information was important for us to find more efficient ACE2 peptides to block the 2019-nCoV infection. So during this study, we summarized the role of ACE2 in the regulation of 2019-nCoV infection and stress, and hypothesized that the development and optimization of ACE2 peptide can effectively block 2019-nCoV infection and reliably treat the COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , COVID-19/metabolism , COVID-19/virology , Humans , Models, Molecular , Peptides , Protein Binding/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
12.
Zhonghua Xin Xue Guan Bing Za Zhi ; 48(7): 587-592, 2020 Jul 24.
Article in Chinese | MEDLINE | ID: covidwho-24059

ABSTRACT

Objective: Present study investigated the mechanism of heart failure associated with coronavirus infection and predicted potential effective therapeutic drugs against heart failure associated with coronavirus infection. Methods: Coronavirus and heart failure were searched in the Gene Expression Omnibus (GEO) and omics data were selected to meet experimental requirements. Differentially expressed genes were analyzed using the Limma package in R language to screen for differentially expressed genes. The two sets of differential genes were introduced into the R language cluster Profiler package for gene ontology (GO) and Kyoto gene and genome encyclopedia (KEGG) pathway enrichment analysis. Two sets of intersections were taken. A protein interaction network was constructed for all differentially expressed genes using STRING database and core genes were screened. Finally, the apparently accurate treatment prediction platform (EpiMed) independently developed by the team was used to predict the therapeutic drug. Results: The GSE59185 coronavirus data set was searched and screened in the GEO database, and divided into wt group, ΔE group, Δ3 group, Δ5 group according to different subtypes, and compared with control group. After the difference analysis, 191 up-regulated genes and 18 down-regulated genes were defined. The GEO126062 heart failure data set was retrieved and screened from the GEO database. A total of 495 differentially expressed genes were screened, of which 165 were up-regulated and 330 were down-regulated. Correlation analysis of differentially expressed genes between coronavirus and heart failure was performed. After cross processing, there were 20 GO entries, which were mainly enriched in virus response, virus defense response, type Ⅰ interferon response, γ interferon regulation, innate immune response regulation, negative regulation of virus life cycle, replication regulation of viral genome, etc. There were 5 KEGG pathways, mainly interacting with tumor necrosis factor (TNF) signaling pathway, interleukin (IL)-17 signaling pathway, cytokine and receptor interaction, Toll-like receptor signaling pathway, human giant cells viral infection related. All differentially expressed genes were introduced into the STRING online analysis website for protein interaction network analysis, and core genes such as signal transducer and activator of transcription 3, IL-10, IL17, TNF, interferon regulatory factor 9, 2'-5'-oligoadenylate synthetase 1, mitogen-activated protein kinase 3, radical s-adenosyl methionine domain containing 2, c-x-c motif chemokine ligand 10, caspase 3 and other genes were screened. The drugs predicted by EpiMed's apparent precision treatment prediction platform for disease-drug association analysis were mainly TNF-α inhibitors, resveratrol, ritonavir, paeony, retinoic acid, forsythia, and houttuynia cordata. Conclusions: The abnormal activation of multiple inflammatory pathways may be the cause of heart failure in patients after coronavirus infection. Resveratrol, ritonavir, retinoic acid, amaranth, forsythia, houttuynia may have therapeutic effects. Future basic and clinical research is warranted to validate present results and hypothesis.


Subject(s)
Coronavirus Infections/complications , Heart Failure/virology , Pneumonia, Viral/complications , Betacoronavirus , COVID-19 , Computational Biology , Gene Expression Profiling , Gene Ontology , Heart Failure/drug therapy , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL